FARM MANAGEMENT RESEARCH: A DISCUSSION OF SOME OF THE IMPORTANT ISSUES.

Gray, D. I.1, Parker, W.J.2 and Kemp, E.3

1 Institute of Natural Resources, Massey University
 D.I.Gray@massey.ac.nz
2 Landcare Research
3 School of Engineering & Advanced Technology, Massey University

Abstract

The discipline of Farm management has often been criticized for not delivering the benefits to practitioners that are expected of it. This paper explores two issues that have limited the development of the discipline over the years. First, the research focus and methodologies adopted by the discipline have hindered the development of a robust and useful body of theory. Second, the divergence of farm management theory into three different views (management process, decision making process and problem solving process) of management practice has limited the development of theory.

The adoption of economics as the underlying theoretical framework for the discipline has limited the development of useful theory about the management practices of farmers. This has focused research on the criteria by which a choice is made rather than the process of making the choice. The discipline would be better served by drawing on theory from management science, where the focus is on the management process. Similarly, the discipline’s focus on mathematical modeling has tended to ignore the effect of the farmer in farm management. Empirical research into farm management has tended to use survey-based cross-sectional studies that have focused on the statistical analysis of easily measured socio-economic variables to define the characteristics of successful farmers. There have been a limited number of longitudinal case studies that are more appropriate for investigating the complex management processes used by farmers.

The other factor that has limited the development of useful farm management theory has been the divergence of farm management theory into three different views (management, decision making and problem solving processes) of management practice. Analysis of the literature shows that these three views of management practice developed from common roots and are essentially the same process. However, this proliferation of theory has created confusion in the literature and has often been developed in a somewhat ad-hoc manner. For example, researchers have often failed to: build on preceding theory, cite sources when modifying existing theory, provide definitions of key concepts, or adopt recognised definitions and terms. They have also altered the position of various sub-processes within functions without justifying such changes. These inconsistencies are often associated with relatively new disciplines that have had limited theoretical development. It may also reflect a general lack of empirical research into the management process and the comparison of these models to actual farmer practice.

The paper highlights that the management, decision-making, and problem solving processes reported in the literature can be considered synonymous and that theory development in farm management has tended to be somewhat ad-hoc. It would be sensible to adopt the management process as the model under which farm management is researched because management rarely comprises a single decision. Rather, it is an ongoing cyclical process of planning, implementation and control, where planning decisions tend to be much less frequent than implementation and control decisions. Such decisions need to be considered by level (strategic, tactical and operational), field (production, finance, marketing and human resources) and by structuredness (structured, unstructured). Similarly, the discipline needs
to adopt a more systematic and rigorous approach to theory development if it is to make greater progress.

It is the authors' belief that the discipline does not have to remain “underexposed”. Rather, through a shift in research focus to the study of farmers' management practices, the integration of relevant theory from management science, the greater use of longitudinal case study-based methods (in conjunction with well thought out modeling and survey-based studies), the adoption of a management process view of farmer practice and a more systematic and rigorous theory development process, the farm management discipline can begin to generate theory that is highly relevant to practitioners.

Introduction

Farm management as a discipline has often been criticized for not delivering the benefits to practitioners that are expected of it (Rougoor et al., 1998). This paper explores two issues that may have limited the development of the discipline over the years. The first of these is the research focus and methodologies adopted by the discipline which has limited the development of a robust and useful body of theory. The second is the divergence of farm management theory into three different views of management practice, as a management process, as a decision making process and as a problem solving process. These issues are discussed in the following sections

Research focus and methodology

Over the history of farm management there have been a number of reviews of the discipline (Johnson, 1957, 1963; Jensen, 1977; Nix, 1979; Giles and Renborg, 1990; Malcolm, 1990; Rougoor et al., 1998) and often the conclusion from such reviews is similar to that made by Rougoor et al. (1998, p. 270) that the area was “underexposed”. In particular, the discipline has struggled to develop useful theory that describes the management practices of farmers. Two inter-related factors stand out as possible reasons for the lack of theoretical development on the management processes used by farmers. First, the adoption of economics as the underlying theoretical framework for the discipline and second, the emphasis placed on quantitative research methods. At the famous Black Duck workshop in 1949, the role of economic theory in farm management research was debated and the proponents of economic theory set the methodological foundations that would dominate farm management research during the 1950’s and 1960’s (Jensen, 1977; Malcolm, 1990). The primary focus through this period was production economics and mathematical programming (Jensen, 1977; Malcolm, 1990), but little work was undertaken in relation to the critical success factors for exceptional farm performance (Howard and MacMillan, 1991). Ulf Renborg echoed this view when he stated: “in the short space of twenty or thirty years, from the sixties to the eighties, farm management as an academic discipline has seemed to stray from the needs of farm management as a practice” (Giles and Renborg, 1990). This was despite the criticism of researchers’ preoccupation with an economic framework for studying management (Johnson, 1957, 1963; Gasson, 1973; Andison, 1989; Giles and Renborg, 1990). In economics, emphasis is placed on the criteria by which a choice is made or the way in which a choice is made (Gasson, 1973), rather than the “process of making the choice” (Andison, 1989) or “why” it was made (Gasson, 1973). Further, an economics paradigm leads to the presumption of homogeneity in production technology, management and behaviour (Driver and Onwona, 1986).

After reviewing the contributions that various disciplines might make to farm management research, Johnson (1957) concluded that economics provides a necessary, but not sufficient framework for the study of management in farming. Other authors (Williams, 1957; Wright, 1985; Andison, 1989; Giles and Renborg, 1990; Harling and Quail, 1990) reached the same conclusion. Several authors (Wright, 1985; Renborg, 1988; Andison, 1989; Harling and
Quail, 1990; Martin et al., 1990) also made a case for the integration of management science with farm management, particularly because of its focus on the management process (Andison, 1989). The call for further research into the decision-making processes used by farmers has been reiterated through the history of farm management research (see Johnson, 1957, 1963; Plaxico and Wiegman, 1957; Williams, 1957; Burns, 1973; Jackson, 1975; Andison, 1989; Howard and MacMillan, 1990; Rougoor et al., 1998; Nuthall, 1999). Andison (1989) discussed the need for farm management researchers to identify the factors that make managers successful, and the separation of these into those that can and cannot be taught. The former can then be passed onto the farming community and strategies can be developed to minimise the impact of the latter.

The second factor that has limited research into farmers’ management processes is the emphasis placed on quantitative research. These methods can be usefully separated into modeling and survey-based approaches. The development of prescriptive models (linear programming and simulation modeling) dominated the farm management literature through the 1960’s and 1970’s (Malcolm, 1990). This prescriptive approach in effect ignored the effect of the farmer in farm management.

Where empirical research into farmers’ management processes has been undertaken, these studies have been dominated by survey-based cross-sectional research approaches (Howard and MacMillan, 1991; Rougoor et al., 1998). Howard and MacMillan (1991) were critical of the studies on farm performance undertaken in the 1980’s because they were based on easily measured “historical phenomena” but failed to investigate “how” farmers achieved high levels of performance. The criticisms identified by Howard and MacMillan (1990) also applied to many of the studies on farm performance undertaken in the 1990’s which investigated the relationship between farm, farmer characteristics and farm performance (Rosenberg and Cowen, 1990; Tarabla and Dodd, 1990; Cruise and Lyson, 1991; Wadsworth and Bravo-Ureta, 1992; Jordan and Fourdraine, 1993; Jose and Crumly, 1993; Boland and Patrick, 1994; McGregor et al., 1995). Interestingly, the distinction between the characteristics of successful managers and what they do was made as early as 1955 in the business literature (Katz, 1974). Katz (1974) argued that to study what managers do (i.e. the kinds of skills they exhibit when carrying out their job effectively), rather than their innate traits and characteristics would provide more useful research results in relation to the selection and development of managers.

Howard and MacMillan (1991) advocated a shift in emphasis away from quantitative surveys to qualitative case studies so that the management processes that farmers use to achieve various levels of performance could be identified. Rougour et al. (1998) after reviewing 28 management process studies also concluded that longitudinal rather than cross-sectional survey-based research methods were more suitable for the study of management because of its continuous and on-going nature. Over the last thirty years, several management-related disciplines have shifted towards this type of research in order to reduce the gap between theory and practice. These include operations management (Miller et al., 1981; Meredith et al., 1989; Flynn et al., 1990), accountancy (Christenson, 1983; Morgan, 1983a; Tompkins and Groves, 1983; Kaplan, 1984; Chua, 1986) and organisational sciences (Mintzberg, 1973, 1975, 1979; Burrell and Morgan, 1979; Van Maanen, 1979; Morgan and Smircich, 1980; Morgan, 1983b; Yin, 1984, 1993; Lincoln, 1985; Archer, 1988; Eisenhardt, 1989, 1991; Easterby-Smith et al., 1991; Guba and Lincoln, 1994).

The argument for using case study methods in management research is based on the belief that they provide a better understanding of the complex processes used by managers than traditional quantitative research approaches (Mintzberg, 1975, 1979; Morgan and Smircich, 1980; Yin, 1984). In contrast, the “quantitative-qualitative” debate has not featured strongly in the mainstream farm management literature. However, there has been an increasing number of case studies published since the early 1990’s lead by work in France (e.g.
Attonaty and Soler, 1991; Cerf et al., 1993; Fleury et al., 1996; Dore et al., 1997; Aubry et al., 1998), Sweden (Ohlmer et al., 1996; Ohlmer, 1998; Ohlmer et al. 1997; Ohlmer et al. 1998) and New Zealand (Crawford et al., 1995; Catley et al., 2000; Gray et al., 2002, 2003a, 2003b, 2004, 2006, 2008). The use of case studies has been also been advocated by several authors (e.g. Maxwell, 1986; Doorman, 1990; Howard and MacMillan, 1991) Bill Malcolm, a leading farm management researcher also advocated the use of case studies in both farm (Malcolm, 2000) and natural resource management (Crosthwaite et al., 1997).

However, these have been in the minority, suggesting that these methods have yet to gain widespread acceptance amongst farm management researchers.

In summary, the adoption of economics as the underlying theoretical framework for the discipline has limited the development of useful theory about the management practices of farmers. Similarly, although numerous farm management studies have investigated the factors associated with farm performance, most have used surveys and focused on the statistical analysis of easily measured socio-economic variables to define the characteristics of successful farmers. There have been a limited number of in-depth studies that have investigated how farmers manage their farms and how their management practices impact on farm performance. This has restricted the development of a robust and useful body of theory on farm management. Until these limitations are addressed, farm management as a discipline will remain “under-exposed”.

The divergence of farm management theory into different views of management practice

Anthony (1965) argued that when studying a field of interest, a framework is required to organise the information collected. In farm management, a framework for investigating the management practices requires the researcher to distinguish between, and integrate three separate but interrelated processes: management, decision-making, and problem-solving (Scoullar, 1975). The terms “management process”, “decision-making process”, and “problem-solving process” are used interchangeably in the literature (Scoullar, 1975; Cary, 1980) and all three have been used to describe the management practices of farmers.

Numerous authors (Johnson, 1954; Koontz, 1962; Anthony, 1965) have suggested "usefulness" is an important criterion for evaluating the quality of theory. Given the above problem, fundamental questions can be asked such as what is the usefulness to management research of distinguishing between the processes of management, decision-making and problem-solving, and how might the literature on these three processes be best organised in the context of a management study? A framework is developed in the following section on important theoretical concepts relevant to the study of the management processes used by farmers.

Management process

The literature on the management process has developed from the seminal work of Bradford and Johnson (1953), Johnson and Haver (1953), Johnson (1954), Johnson et al. (1961), Lee and Chastain (1960), and Nielson (1961) (Table 1). A six-function model (Johnson et al., 1961) of the management process emerged from this research that has dominated farm management theory for the last forty years, although the model was simplified during this time from six (problem recognition/definition, observation, analysis, decision, action, responsibility bearing) to three functions (Table 2): planning, implementation and control (Boehlje and Eidman, 1984; Kay and Edwards, 1994). A major advance occurred during the early 1970's when Barnard and Nix (1973) introduced these functions into the farm management literature. However, the evolution of the management process model has not been straightforward (Table 2). Researchers have failed to: build on preceding theory, cite sources when modifying existing theory, provide definitions of key concepts, or adopt
recognised definitions and terms. They have also altered the position of various sub-processes within functions without justifying such changes. These inconsistencies are often associated with relatively new disciplines that have had limited theoretical development (Kuhn, 1962) and may also reflect a general lack of empirical research into the management process. With the exception of the 1961 study by Johnson et al. (1961), few of the models proposed for farm management have been empirically tested.

Table 1. Components of models within management process theory as proposed by different authors in the 1950's - 1960's.

<table>
<thead>
<tr>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal formulation</td>
<td>Problem recognition</td>
<td>Problem definition</td>
<td>Problem and opportunity recognition and definition</td>
</tr>
<tr>
<td>Observation</td>
<td>Information gathering</td>
<td>Observation</td>
<td>Observation and information gathering</td>
</tr>
<tr>
<td>Analysis</td>
<td>Recognition of alternative solutions</td>
<td>Analysis</td>
<td>Specification of alternative solutions</td>
</tr>
<tr>
<td></td>
<td>and opportunities</td>
<td>Analysis of alternative solutions</td>
<td>Analysis of alternative solutions</td>
</tr>
<tr>
<td>Decision</td>
<td>Decision</td>
<td>Decision</td>
<td>Decision-making</td>
</tr>
<tr>
<td>Action</td>
<td>Action or inaction</td>
<td>Action</td>
<td>Action-taking or implementation</td>
</tr>
<tr>
<td>Responsibility bearing</td>
<td>Responsibility bearing</td>
<td>Responsibility bearing</td>
<td>Responsibility bearing</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Evaluating the outcome</td>
</tr>
</tbody>
</table>

A comparison of the models of management process in Tables 1 and 2 highlight several inconsistencies. First, several authors (Nielson, 1961; Suter, 1963; Calkin and Di Pietre, 1983; Renborg in Giles and Renborg, 1990) believed that goal formulation was a function of the management process while others (Barnard and Nix, 1973; Scoullar, 1975; Kay, 1981; Dalton, 1982; Boehje and Eidman, 1984; Buckett, 1988; Giles in Giles and Renborg, 1990; Kay and Edwards, 1994) thought it was a separate and higher level process. Despite its importance and unlike the other management functions, little has been written on goal formulation or its sub-processes. For the purposes of this paper, it is assumed that goal formulation is separate to and outside the management process, but that its products, goals and objectives are key drivers of the process.
Table 2. Development of management process theory as proposed by different authors in the 1970’s - mid-1990.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Goal formulation</td>
<td>Forecasting</td>
<td>Planning</td>
<td>Compilation</td>
</tr>
<tr>
<td>Implementation</td>
<td>Implementation</td>
<td>Implementation</td>
<td>Planning</td>
<td>Implementation</td>
</tr>
<tr>
<td>Control</td>
<td>Control</td>
<td>Recording</td>
<td>Evaluation</td>
<td>Control</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Forecasting</td>
<td>Planning</td>
<td>Information collection</td>
<td>Planning</td>
</tr>
<tr>
<td>Planning</td>
<td>Planning</td>
<td>Analysis</td>
<td>Planning</td>
</tr>
<tr>
<td>Implementation</td>
<td>Decision-making</td>
<td>Implementation</td>
<td>Implementation</td>
</tr>
<tr>
<td>Recording</td>
<td>Control</td>
<td>Control</td>
<td>Control</td>
</tr>
<tr>
<td>Analysis and appraisal of results</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is generally accepted that management comprises three functions: planning, implementation and control (Boehlje and Eidman, 1984; Kay and Edwards, 1994) and these appear to have been derived from the six functions proposed by Johnson et al. (1961). However, there are discrepancies in terms of what constitutes the management process (Table 2). For example, some authors (Barnard and Nix, 1979; Dalton, 1982; Calkin and Di Pietre, 1983; Buckett, 1988; Renborg in Giles and Renborg, 1990) separate out functions while others (Kay, 1981; Boehlje and Eidman, 1984; Kay and Edwards, 1994) subsume these under the major functions of planning (forecasting, compilation, information collection, analysis), implementation and control (recording, analysis and appraisal, correction) (Table 2).

Some aspects of the earlier models of management are omitted in later models. For example, evaluation, identified as critical for learning by Nielson (1961) is implied, rather than included in most models of the control process. Few authors (e.g. Mauldon, 1973) explicitly mention evaluation in relation to control. Similarly, recent management process models omit the function "responsibility bearing" (Table 2). This may be because it is assumed or because it is not a process: managers either accept or do not accept responsibility for their actions. Different views are also held on what the function implementation comprises. The majority of authors view implementation as the process of putting a plan into action (Dalton, 1982; Calkin and Di Pietre, 1983; Kay and Edwards, 1994). However, Barnard and Nix (1973) considered that it also included the process of selecting the best plan to implement.

The above examples show that although the management process has evolved from common roots over the last fifty odd years, this has not always been consistent. Inconsistencies included the carryover of additional functions from earlier models of management (Table 1) and the naming and definition of functions.

Most of the management process models prescribe the functions a farm manager must undertake. Scoullar (1975) took a different view and considered management from the point...
of view of the knowledge and skills a farmer might need to run a farm business. This allowed Scoullar (1975) to cleave the management process into two distinct types on the basis of the manager's knowledge level. The first, termed the "goal achievement process", is applied when managing situations where s/he has a full knowledge of the situation and the management actions required. Here the manager can draw on routine management procedures that they have used in the past. This model is similar to others of the management process.

The second, the "problem solving process", was developed by Scoullar (1975) to describe how managers operate when faced with novel situations and therefore have no prior knowledge upon which to draw. Here the manager needs to use quite different knowledge and skills. This view is similar to Simon's (1960) cleavage of "programmed" and "non-programmed" decisions, and Gorry and Morton's (1971) "structured" and "unstructured" decisions. Unstructured decisions do not have ready-made solutions (Simon, 1960) and because the decision-maker has no experience with such decisions, no pre-defined procedures exist for their execution (Gorry and Morton, 1971). Unstructured decisions also require more steps, with feedback between steps and may involve delays or interruptions (Gorry and Morton, 1971; Mintzberg et al., 1976). Mintzberg et al. (1976) also reported that unstructured decisions required more rigorous diagnosis, search, design, screen and choice sub-processes than structured decisions. "Structured" and "unstructured" decisions identify two points on a continuum, and therefore, Gorry and Morton (1971) proposed a third category, "semi-structured" decisions. This distinction is useful for researchers when investigating different management situations, or for considering the skills and knowledge required by a manager to cope with distinct management situations. For example, tactical decisions, and decisions made by experienced managers, could be expected to fall predominantly in the "programmed" or "structured" decision category. In contrast, decisions made by inexperienced managers, or strategic decisions, by their very nature, could be expected to fall into the "non-programmed" or "unstructured" category. This taxonomy provides guidelines to researchers studying the management processes used by farmers. What then is the difference between the management and decision-making processes in farm management?

Decision-making process

The confusion surrounding the difference between the management and decision-making processes is not surprising when the literature is analysed (Hardaker et al., 1970; Castle et al., 1972; Osburn and Schneeberger, 1978). As Table 3 illustrates, the concepts evolved from common roots, namely the work on management functions undertaken by Bradford and Johnson (1953), Johnson and Haver (1953), Johnson (1954), Johnson et al. (1961), Lee and Chastain (1960) and Nielson (1961). Because many of these models formed the basis for the management process model, similar issues can be therefore expected to arise in the decision-making literature such as whether goal formulation is part of decision-making (See Tables 3 & 4). Castle et al. (1972) and Osburn and Schneeberger (1978) viewed goal formulation as part of decision-making, but later authors (Kay, 1981; Boehlje and Eidman, 1984; Makeham and Malcolm, 1993; Kay and Edwards, 1994) viewed it as separate from, but important to, decision-making.
Table 3. The roots and component elements of decision-making process theory.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal formulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Problem definition</td>
<td>Problem recognition</td>
<td>Problem recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and definition</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Opportunity recognition</td>
<td></td>
<td>Opportunity recognition</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td>Observation and</td>
<td>Observation and</td>
<td>Recognising</td>
<td>Preparation</td>
<td></td>
</tr>
<tr>
<td></td>
<td>information gathering</td>
<td>information gathering</td>
<td>alternatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Recognising</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and collecting information</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analysis</td>
<td>Recognition of</td>
<td>Recognition of</td>
<td>Evaluation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>opportunities</td>
<td>opportunities</td>
<td>alternatives</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Specification of</td>
<td>Specification of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>alternative solutions</td>
<td>alternative solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>and opportunities</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Analysis of alternative</td>
<td>Analysis of alternative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>solutions</td>
<td>solutions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decision</td>
<td>Decision-making</td>
<td>Selecting an alternative</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Action-taking or</td>
<td>Making a decision in</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>implementation</td>
<td>terms of a plan of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Action</td>
<td>action</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Responsibility bearing</td>
<td>Responsibility bearing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Evaluating the outcome</td>
<td>Evaluating the outcome</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Debate also exists in the literature about what constitutes a decision, i.e. is it the process of making a decision or does it extend further than this and include implementation, evaluation and responsibility bearing. Authors such as Brannen (1961), Nielson (1961), Thornton (1962), Scoullar (1975), and Dryden (1997) have argued that decision-making should be viewed solely as the act of making a decision. Brannen (1961) stated that a decision was final when expressed in action and thus the outcome of the decision-making process was a plan of action. Cary (1980) adopted the perspective of cleaving "reflection" from "action" and accordingly, he viewed decision-making as primarily a mental process that formed the link between thinking and doing. He argued therefore that researchers could not fully comprehend the behaviour of a decision maker until they understood their mental models and perception of reality at the time the decision was made. Consequently his view of decision-making incorporates all steps except action. This may be a more useful view because it explicitly incorporates evaluation and failure to undertake this function limits learning.

As mentioned previously, responsibility bearing, unlike the other decision-making steps, is not a process, but rather an attitude that is assumed to be held (or not held) by the decision maker. The existence of this attitude however is important. Without it, managers would most likely forego evaluation in the belief that poor outcomes from decisions were due to chance rather than their own actions. As a result, limited learning would occur. In contrast, action or implementation, although it is seen to be critical for effective decision-making, has not traditionally been the focus of management research. Management researchers’ bias has been towards the cognitive aspects of decision-making, the actions managers take and the outcomes that result from those actions, rather than the action-taking process itself.

1 Also based on Bradford and Johnston (1953), Johnson and Haver (1953) and Johnson (1954).
The final issue raised in the decision-making literature, and the most relevant to this paper, is whether decision-making and management processes differ and if so whether this distinction is useful. The fact that the two processes emerged from common roots, as illustrated earlier (Table 3), indicates that there may be grounds for considering them as versions of the same process. Dryden (1997) viewed decision-making to be isomorphic with the management process. He considered that the steps problem recognition or definition,
observation, analysis and decision were equivalent to planning. Action was synonymous with implementation, while the acceptance of responsibility and evaluation were equivalent to control. In contrast, Thornton (1962) believed that the steps observation, analysis and decision were synonymous with planning. He (therefore) differed from Dryden (1997) in that he viewed problem recognition/definition as being distinct from planning. This view may be more logical because problem recognition/definition is similar to the control process except that the steps by which the choice of corrective action is chosen are missing.

A useful distinction made by Thornton (1962) was that managers made two types of decisions: detailed and infrequent decisions and simpler routine decisions. This may be useful for differentiating between less frequent "planning" decisions that involve a detailed planning process and more frequent "control" decisions where a deviation is identified, diagnosed and a suitable control response selected to minimise the impact of the deviation. This view is similar to that held by Boehlje and Eidman (1984) who believe that decision-making occurs across the three functions of management. As such, both decisions (planning and control) would incorporate a "control" aspect because a planning decision is normally triggered by the identification of a "problem" or the need to develop a plan.

The decision-making models have been criticised by Cary (1980) because of their simplistic nature and the lack of detail at the sub-process level. He argued that to understand how farmers manage and make decisions, researchers must understand how farmers perceive the world in which they operate and the mental models they use to do this. The majority of decision-making models provide limited insight into the cognitive processes used by farmers. A taxonomy of the sub-processes (or decisions) used by farm managers has been developed to varying degrees by several authors (Lee and Chastain, 1960; Scoullar, 1975; Boehlje and Eidman, 1984).

Some progress has been made in identifying the sub-processes used in decision making through the recent work of Ohlmer et al. (1998). They developed a matrix model of the decision-making process from a case study of the strategic decisions made by Swedish farmers. The matrix model (Figure 1), although similar to most models of decision-making (Johnson et al., 1961; Hardaker et al., 1970; Kay, 1981; Boehlje and Eidman, 1984; Makeham and Malcolm, 1993; Kay and Edwards, 1994), has some important differences and is influenced by decision-making research outside the discipline of farm management (e.g. Newell and Simon, 1972; Mintzberg et al., 1976; Hogarth, 1981; Beach, 1993; Klein et al., 1993; Lipshitz, 1993).

<table>
<thead>
<tr>
<th>Sub-process</th>
<th>Phase</th>
<th>Searching & paying attention</th>
<th>Planning</th>
<th>Evaluating & choosing</th>
<th>Bearing responsibility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem detection</td>
<td>Information scanning</td>
<td>Paying attention</td>
<td></td>
<td>Consequence evaluation Problem?</td>
<td>Checking the choice</td>
</tr>
<tr>
<td>Problem definition</td>
<td>Information search</td>
<td>Finding options</td>
<td></td>
<td>Consequence evaluation Choose options to study</td>
<td>Checking the choice</td>
</tr>
<tr>
<td>Analysis & choice</td>
<td>Information search</td>
<td>Planning</td>
<td></td>
<td>Consequence evaluation Choice of option</td>
<td>Checking the choice</td>
</tr>
<tr>
<td>Implementation</td>
<td>Information search</td>
<td>Clues to outcomes</td>
<td></td>
<td>Consequence evaluation Choice of corrective action(s)</td>
<td>Bearing responsibility for the final outcome Feed Forward information</td>
</tr>
</tbody>
</table>

Figure 1. Conceptual model of the decision-making process (Source: Ohlmer et al., 1998).
Ohlmer et al. (1998) separated the step problem recognition and definition (Tables 3 & 4) into two phases, problem recognition and problem definition. Identification and analysis of alternatives and decision are combined into one phase, called analysis and choice. The steps information collection, evaluation and bearing responsibility have been redefined as sub-processes that occur across the four phases. Observation has been renamed as searching and paying attention and evaluation as evaluating and choosing. A new sub-process, planning, has been introduced within the analysis and choice phase. They also argued that decision makers collect information at each phase of the decision-making process rather than just at the information collection step. The sub-process, searching and paying attention, may be different from the information collection step in the decision-making process, because it includes both the external search for information and the internal search for information stored in the memory of the decision maker. Further, Ohlmer et al. (1998), on the basis of their work and that of Lipshitz (1993), argued that option generation should occur within the problem definition phase rather than during analysis as had been the case historically. The naturalistic decision-making models of the problem-solving processes used by experts reviewed by Lipshitz (1993) suggested that option generation was strongly linked to problem definition.

Although it could be argued that the changes Ohlmer et al. (1998) made to the decision-making model could have been deduced logically from the existing literature, the model attempts to make more explicit, the sub-processes that comprise the decision-making process of farmers. Empirical information on the nature of these sub-processes remains scant.

Over the last two decades, farm management researchers (Fairweather, 1992; Murray-Prior 1998; Murray-Prior and Wright, 1994, 2001; Jangu et al., 1995; Fairweather and Campbell, 1996; Darnhofer et al., 2005) have adopted Gladwin’s (1976, 1979ab, 1980, 1983, 1989) hierarchical decision tree model to look at the decision making processes of farmers. Gladwin (1976, 1979ab, 1980) developed a six step process to describe the option evaluation and selection process used by farmers. During step one, all the aspects of the options are listed. Then heuristics are used to eliminate aspects that are not relevant to the decision. One aspect from this “reduced” set of aspects is chosen, normally the most important one, to order the options on. The alternatives are then ordered according to the chosen aspect. The minimum condition that must be met by the options is specified. Constraints are formulated from the remaining aspects and if the option that is ranked first on the ordering aspect passes all the constraints, it is accepted. If the first ranked option does not pass all the constraints, the second ranked option is tested, and so on until a suitable option is identified. If none of the options pass the test, another strategy is adopted to identify a suitable option.

The hierarchical decision tree model has been applied to a range of decisions (e.g. Fairweather, 1992; Murray-Prior, 1994, 1998; Murray-Prior and Wright, 1994, 2001; Jangu et al., 1995; Fairweather and Campbell, 1996; Darnhofer et al., 2005) and found to predict farmer behaviour to a high degree of accuracy. However, it has also drawn some criticism. For example, several authors (Franzel, 1984; Fairweather, 1992; Murray-Prior, 1998) claim it was less useful in determining what factors dictate the quantity of an option chosen by the farmer. Franzel (1984) believed that this problem could be overcome where farmers could convert continuous variables into discreet variables. Murray-Prior (1998) also criticised the model because it did not explain (i) how the decision-maker chose the aspects used in the decision-making process, (ii) why decision makers behave in the way predicted by the model, (iii) the motivation for such decisions, or (iv) how learning takes place. He proposed the incorporation of personal construct theory (Kelly, 1955) into the model as a way to overcome these problems.
Murray-Prior (1998) argued that the constructs a person uses in a particular decision are a function of their perception of the current situation, and their experience with similar situations. Therefore, both context and experience are important in decision-making. Similarly, changing environments require individuals to reassess their decision rules and time is necessary before they learn which rules are most appropriate for the new conditions. Learning may result in a change in the hierarchical position of constructs, or the addition of new constructs. Murray-Prior (1998) therefore believed that Gladwin’s (1976) hierarchical decision tree models would lose their predictive capability during periods of change. The farm management research that has used the hierarchical decision tree modeling approach has provided some very useful insights into farmer decision making. However, this approach only provides a "partial" view of the decision making process because it focuses primarily on the option evaluation and selection sub-processes.

Management and decision-making processes, according to the literature, are essentially the same. Both incorporate, to varying degrees, steps that involve the generation, analysis and selection of alternatives, the development and implementation of plans, and the identification, diagnosis and evaluation of problems or deviations from the plan, and some form of correction, whether it is through the development of a new plan or the introduction of a contingency plan. Interestingly, one process starts with planning while the other starts with control or the identification of a problem. This has important implications for researchers reporting empirical work under the banner of "decision-making". For example, depending on the magnitude of the problem, the decision maker may undertake either a relatively simple corrective process or a more detailed planning procedure (Thornton, 1962). Researchers, when reporting on such decisions, could usefully classify them as either simple control, or more complex planning decisions.

If the management and decision-making processes can be considered synonymous, then it would be sensible to adopt the management process as the model under which management is researched. This is because management rarely comprises a single decision (Brannen, 1961; Thornton, 1962), rather it is an ongoing cyclical process of planning, implementation and control, where planning decisions tend to be much less frequent than control decisions (Thornton, 1962). This model was used by Gray et al. (2003b) to describe the tactical management process of expert dairy farmers he investigated over a three year period (Figure 2). He found that farmers made major planning decisions at the start of a planning period, and then over the planning horizon, the farmers made regular implementation and control decisions, where the ratio of implementation to control decisions was a function of the level of uncertainty faced by the farmer. At the end of the planning horizon, the farmers then undertook another major planning decision. A planning decision will comprise a sub-set of lower level decisions or sub-processes as suggested by Cary (1980), e.g. what information to obtain, how long to search for this, what options to investigate, and so on.

![Figure 2. Representation of the feed management process used by the farmers (Source: Gray et al., 2003b).](image-url)
In any decision making study, the classification of decisions is important. Castle et al. (1972) classified decisions on the basis of: importance, frequency, imminence, revocability and available alternatives. The usefulness of this classification schema is not clear since few, if any, researchers have reported using it when analysing farmers' decisions. There may also be some fundamental problems with such a schema. For example, *importance* and *imminence* may be time dependent and inter-related. In contrast to Castle et al. (1972), the schema originally proposed by Gorry and Morton (1971) and introduced to farm management by Dryden (1997) appears to provide a more useful way of classifying the decisions of farmers. Gorry and Morton (1971), drawing on the work of Simon (1960) and Anthony (1965), classified decisions by level (strategic, tactical and operational), and "structuredness" (structured, unstructured). By their nature, operational decisions tend to be structured and strategic decisions unstructured. Experienced (or more knowledgeable) farmers tend to make more structured decisions than inexperienced (or less knowledgeable) farmers. This latter distinction ties in with Scoullar's (1975) distinction between "routine decision making" (goal achievement), and "problem solving". Empirical research of decision-making could usefully be classified and reported using this matrix.

Problem-solving process

The final consideration in this paper is how problem-solving is related to the management and decision-making processes. The problem-solving process was derived from the same roots as decision-making process. Johnson (1976) developed a model of problem-solving (Table 5) from his model of the management process (Johnson et al., 1961). It is therefore not surprising that the terms management process, decision-making process, and problem-solving process are used interchangeably (Scoullar, 1975; Cary, 1980). Cary (1980) thought there was little point in distinguishing between decision-making and problem-solving because they appeared to be synonymous in the literature. It is not difficult to see how problem-solving fits into the management process. A problem is traditionally defined as a gap between actual and desired performance (Cary, 1980) and therefore problem-solving is the process used to minimise that gap in much the same way as the management process is used to progress a manager from his/her current state to some future desired state.

Table 5. Early research related to elements in the problem-solving and management functions.

<table>
<thead>
<tr>
<th>Model of Managerial Adjustment</th>
<th>Management Functions</th>
<th>Problem-Solving Process</th>
<th>Problem-Solving Process</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem recognition</td>
<td>Problem definition</td>
<td>Problem recognition</td>
<td>Problem definition</td>
</tr>
<tr>
<td>Difficulty is felt.</td>
<td></td>
<td>Recognising the problem.</td>
<td></td>
</tr>
<tr>
<td>Gather information.</td>
<td></td>
<td>Recognising a 'model'</td>
<td></td>
</tr>
<tr>
<td>Recognise alternative problem</td>
<td></td>
<td>under which the problem</td>
<td></td>
</tr>
<tr>
<td>definitions.</td>
<td></td>
<td>will be studied</td>
<td></td>
</tr>
<tr>
<td>Analyse alternative.</td>
<td></td>
<td>Recognising all</td>
<td></td>
</tr>
<tr>
<td>Problem definitions.</td>
<td></td>
<td>important variables</td>
<td></td>
</tr>
<tr>
<td>Define the problem.</td>
<td></td>
<td>within the 'model'</td>
<td></td>
</tr>
<tr>
<td>Accept responsibility for the</td>
<td></td>
<td>Knowledge of methods</td>
<td></td>
</tr>
<tr>
<td>definition.</td>
<td></td>
<td>needed to investigate</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the variables within</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>the 'model'</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Knowledge of principles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>and generalisations.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comprehension of</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>accumulated facts</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recognising the</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>interrelationships</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>between variables</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Recognising the causes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>of the problem</td>
<td></td>
</tr>
<tr>
<td>Gather information about the</td>
<td>Observation</td>
<td>Observation</td>
<td></td>
</tr>
<tr>
<td>Observation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
As previously mentioned, the process of problem recognition and definition is similar to the monitoring, comparison and diagnosis aspects of the control process. Problems as such, could be classified into a hierarchy comprising those that require the introduction of contingency plans due to an aberration in the environment (i.e. control problems), those that are significant enough to require the introduction of a new planning process (i.e. planning problems) or the reformulation of the manager's goals (goal formulation problems) due to long-term changes in the environment, and those that require the development of a new planning and/or control system due to fundamental problems with the planning model and/or the control system (i.e. management control problems). These planning and control problems are synonymous with planning and control decisions. They also reflect the various corrective actions open to a manager in relation to control (Barnard and Nix, 1973; Boehlje and Eidman, 1984). Problem-solving can therefore also be viewed as a broader form of control, in much the same way as Anthony (1965) viewed the management process.

From Scoullar's (1975) perspective (Table 1.5), problem-solving is synonymous with unstructured decision making and requires a quite different set of processes than those used for structured decision making. A problem, as defined by Scoullar (1975) is the result of a knowledge, not a performance, gap. As such, “problem-solving” in this context is synonymous with learning. This may provide a useful framework for considering unstructured decisions.

A framework for studying farmers' management practices

Critical to any classification schema for management is the level of decision making (Anthony, 1965). Management decisions can be classified as strategic, tactical or operational. The degree of “structuredness” of decision-making, however, will be dependent on the farmer’s knowledge and the number of new situations s/he has encountered. The other aspects of management that must be considered are the functions (planning, implementation and control) and the fields of management (production, finance, human resources and marketing) (adapted from Boehlje and Eidman, 1984). From the above discussion, a classification schema based on the management “cube” (Boehlje and Eidman, 1984) can be derived as shown in Figure 3. Thus, farm management decisions could be classified by level, structuredness, primary function and field. Equally important, as discussed by Cary (1980), is the identification of the detailed sub-processes that comprise the decision-types within this taxonomy. This classification schema is almost identical to that developed by Boehlje and Eidman (1984) except that it distinguishes between structured and unstructured decisions, but does not classify decisions by placement on the farm family life cycle. The latter is not included here because it does not classify the decisions, but rather the decision-maker. The schema is also similar to that provided by Dryden (1997) except he did not include the fields of management.
Strategic
Operational
Tactical

Structured
Unstructured
Structured
Unstructured
Structured
Unstructured

Planning
Implementation
Control

Figure 3. A classification schema for decisions (Derived from Boehlje and Eidman, 1984 and Dryden, 1997).

Conclusions

The farm management discipline has long been criticized for not developing theory that is relevant to practitioners. This paper has identified possible reasons for the paucity of relevant theory. These relate to the research focus and methods used by farm management researchers and also the divergence of farm management theory into three different views of management practice. Importantly, the adoption of economics as the underlying theoretical framework for the discipline has limited the development of useful theory about the management practices of farmers. Economics is a necessary, but not sufficient framework for the study of management practice. In the economics paradigm emphasis is placed on the criteria by which a choice is made or the way in which a choice is made rather than the process of making the choice. As such, the discipline would be better served by drawing on theory from management science, where the focus is the management process. Similarly, the disciplines focus on mathematical modeling tended to ignore the effect of the farmer in farm management. Thus, although this research was interesting, its contribution to the development of useful theory about the management processes used by farmers was limited.

Importantly, when farm management researchers have initiated empirical studies into the management processes of farmers, they have tended to use survey-based cross-sectional studies that have focused on the statistical analysis of easily measured socio-economic variables to define the characteristics of successful farmers. There have been a limited number of in-depth studies that have investigated how farmers manage their farms and how their management practices impact on farm performance. Longitudinal case studies rather than cross-sectional survey-based research methods are more suitable for the study of management because of its continuous and on-going nature. They provide a better understanding of the complex processes used by managers than traditional quantitative research approaches. The above factors have restricted the development of a robust and
useful body of theory on farm management. Until these methodological limitations are addressed, farm management as a discipline will remain “under-exposed”.

The other factor that has limited the development of useful farm management theory has been the divergence of farm management theory into three different views (management, decision making and problem solving processes) of management practice. Analysis of the literature shows that these three views of management practice developed from common roots and are essentially the same process. However, this proliferation of theory has created confusion in the literature and has often been developed in a somewhat ad-hoc manner. For example, researchers have often failed to: build on preceding theory, cite sources when modifying existing theory, provide definitions of key concepts, or adopt recognised definitions and terms. They have also altered the position of various sub-processes within functions without justifying such changes. These inconsistencies are often associated with relatively new disciplines that have had limited theoretical development. It may also reflect a general lack of empirical research into the management process and the comparison of these models to actual farmer practice.

If the management, decision-making, and problem solving processes can be considered synonymous, then it would be sensible to adopt the management process as the model under which farm management is researched. This is because management rarely comprises a single decision, rather it is an ongoing cyclical process of planning, implementation and control, where planning decisions tend to be much less frequent than implementation and control decisions. Such decisions need to be considered by level (strategic, tactical and operational), field (production, finance, marketing and human resources) and by structuredness (structured, unstructured).

It is the authors’ belief that the discipline does not have to remain “underexposed”. Rather, through a shift in research focus to the study of farmers’ management practices, the greater use of longitudinal case study-based methods (in conjunction with well thought out modeling and survey-based studies), the adoption of a management process view of farmer practice, the integration of relevant theory from management science and a more systematic and rigorous theory development process, the farm management discipline can begin to generate theory that is highly relevant to practitioners. In the words of Lewin (1951, p. 169), “there is nothing so practical as good theory”.

References

Conference of the Agricultural Economics Society, Victoria University, Wellington, February 7-11, pp. 32.

